Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model.
نویسندگان
چکیده
Arteries display a nonlinear anisotropic behavior dictated by the elastic properties and structural arrangement of its main constituents, elastin, collagen, and vascular smooth muscle. Elastin provides for structural integrity and for the compliance of the vessel at low pressure, whereas collagen gives the tensile resistance required at high pressures. Based on the model of Zulliger et al. (Zulliger MA, Rachev A, Stergiopulos N. Am J Physiol Heart Circ Physiol 287: H1335-H1343, 2004), which considers the contributions of elastin, collagen, and vascular smooth muscle cells (VSM) in an explicit form, we assessed the effects of enzymatic degradation of elastin on biomechanical properties of rabbit carotids. Pressure-diameter curves were obtained for controls and after elastin degradation, from which elastic and structural properties were derived. Data were fitted into the model of Zulliger et al. to assess elastic constants of elastin and collagen as well as the characteristics of the collagen engagement profile. The arterial segments were also prepared for histology to visualize and quantify elastin and collagen. Elastase treatment leads to a diameter enlargement, suggesting the existence of significant compressive prestresses within the wall. The elastic modulus was more ductile in treated arteries at low circumferential stretches and significantly greater at elevated circumferential stretches. Abrupt collagen fiber recruitment in elastase-treated arteries leads to a much stiffer vessel at high extensions. This change in collagen engagement properties results from structural alterations provoked by the degradation of elastin, suggesting a clear interaction between elastin and collagen, often neglected in previous constituent-based models of the arterial wall.
منابع مشابه
Presentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملKinematics parameter extraction of longitudinal movement of common carotid arterial wall in healthy and atherosclerotic subjects based on consecutive ultrasonic image processing
Introduction:In this study, a non-invasive method based on consecutive ultrasonic image processing is introduced to assess time rate changes of the carotid artery wall displacement, velocity and acceleration in the longitudinal direction. The application of these parameters to discriminate healthy and atherosclerotic arteries was evaluated. Methods:Longitudinal displacement rate of common ...
متن کاملبرآورد سرعت موج پالس با استفاده از پارامترهای شریانی استخراج شده از تصاویر فراصوتی کاروتید
Background & Objective : Several indices have been introduced to estimate arterial stiffness that based on changes in brachial blood pressure. But because of the error resulted by the substitution of brachial blood pressure instead of the other central arteries, such as carotid, it will be very important to present elastic parameter based on the mechanical models without any emphasis on brach...
متن کاملEffect of Ageing on Elastin Functionality in Human Cerebral Arteries
1 BACKGROUND AND PURPOSE The ageing process affects elastin, a key component of the arterial wall integrity and functionality. Elastin may play an important role in cerebral vessels because elastin degradation is linked to cerebrovascular disease [1]. The goal of this study is to assess the biomechanical properties of human cerebral arteries, their composition and geometry, with particular focu...
متن کاملExtraction of the Longitudinal Movement of the Carotid Artery Wall using Consecutive Ultrasonic Images: a Block Matching Algorithm
Introduction: In this study, a computer analysis method based on a block matching algorithm is presented to extract the longitudinal movement of the carotid artery wall using consecutive ultrasonic images. A window (block) is selected as the reference block in the first frame and the most similar block to the reference one is found in the subsequent frames. Material and Methods: The program was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 292 6 شماره
صفحات -
تاریخ انتشار 2007